Лекция 2.

Системы линейных уравнений. Метод Гаусса. Правило Крамера.

 

Определение 2.1. Линейными операциями над какими-либо объектами называются их сложение и умножение на число.

 

Определение 2.2. Линейной комбинацией переменных называется результат применения к ним линейных операций, т.е.  где  числа, переменные.

 

Определение 2.3. Линейным уравнением называется уравнение вида

                                                                                         (2.1)

 где  и b числа, - неизвестные.

Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой – число.

 

Определение 2.4. Линейное уравнение называется однородным, если b = 0. В противном случае уравнение называется неоднородным.

 

Определение 2.5. Системой линейных уравнений (линейной системой) называется система вида

                                                                                 (2.2)    

где  , - числа, - неизвестные, n – число неизвестных, m – число уравнений.

 

Определение 2.6. Решением линейной системы (2.2) называется набор чисел

 которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.

 

 

                    Метод Гаусса решения линейных систем.

 

Замечание. Линейная система (2.2) может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

 

Примеры:

1. . Единственным решением является пара чисел  х = 1, у = 2.

2. . Решением этой системы будут любые два числа х и у, удовлетворяющие условию  у = 3 – х. Например, х=1, у=2;  х=0, у=3 и т. д.

3.. Очевидно, что эта система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

   Условия существования и количества решений линейной системы будут изучены в дальнейшем, а пока рассмотрим способы нахождения единственного решения системы,

в которой число уравнений равно числу неизвестных:   (2.3)

Пусть  (этого всегда можно добиться, поменяв уравнения местами). Разделим обе части первого уравнения на  и вычтем полученное уравнение из каждого из остальных уравнений системы, умножив его предварительно на  где i – номер очередного уравнения. Как известно, полученная при этом новая система будет равносильна исходной. Коэффициенты при  во всех уравнениях этой системы, начиная со второго, будут равны 0, т.е. система выглядит так:

                             .

Если новые коэффициенты при х2 не все равны нулю, можно таким же образом  исключить  из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приведем систему к так называемому треугольному виду:

                            .                                                         (2.4)

Здесь символами  и  обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

     Из последнего уравнения системы (2.4) единственным образом определяется , а затем последовательной подстановкой – остальные неизвестные.

 

Замечание. Иногда в результате преобразований в каком-либо из уравнений обращаются в 0 все коэффициенты и правая часть, то есть оно превращается в тождество  0=0. Исключив его из системы, мы уменьшим число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

 

Примеры:

1. Решим методом Гаусса систему   

Вычтем из второго уравнения удвоенное первое, а из третьего – первое, умноженное на 5.

Получим:  . Теперь вычтем из третьего уравнения удвоенное второе, а затем разделим второе уравнение на –7 (коэффициент при у), а третье – на 15 (новый коэффициент при z). Система примет вид:

                           .  Отсюда  z=3, y=2, x=1 – единственное решение системы.

 

2. Система  после исключения  х  из второго и третьего уравнений примет вид: . Если затем вычесть второе уравнение из третьего, то последнее уравнение станет тождеством 0=0. В системе осталось два уравнения: . Ее решение можно записать в виде:  х = -2, у – любое число, z = 7 – y. Таким образом, система имеет бесконечно много решений.

 

3. . Применив к этой системе метод Гаусса, получим ,

откуда . Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

 

 

                                     Правило Крамера.

 

     Рассмотрим систему (2.3). Назовем главным определителем этой системы определитель , элементами которого являются коэффициенты при неизвестных:

                                    .

 

Предположим сначала, что Умножим каждое уравнение системы (2.3) на алгебраические дополнения  элементов j-го столбца

Сложив затем все уравнения, получим:

.                   (2.5)

Отметим, что   .

                                                                                                            (j-й столбец)

(Результат получен из разложения определителя по j-му столбцу). Такой определитель равен 0 при  и равен  при i = j. Правая часть равенства (2.5) представляет собой определитель , в котором вместо j-го столбца стоит столбец свободных членов системы (2.3). Назовем такой определитель . Рассматривая  j = 1,2,…,n, получим систему, эквивалентную исходной:    (2.6)  . Разделив все уравнения на , найдем единственное решение:  .

Предположим теперь, что =0. Тогда система  (2.6) примет вид:  .

В этом случае, если все =0, система выглядит так:  и имеет бесконечно много решений. Если же хотя бы один из  система решений не имеет.

     Таким образом, правило Крамера позволяет найти единственное решение системы (2.3) или сделать вывод о существовании бесконечного числа решений либо об их отсутствии:

1)       Если  система (2.3) имеет единственное решение, определяемое по формулам: .

2)       Если ==0, система имеет бесконечно много решений.

3)       Если =0, а хотя бы один из  система не имеет решений.

 

Примеры:

1.        Рассмотрим систему , решенную в предыдущем разделе методом Гаусса, и применим к ней правило Крамера. Найдем все нужные определители:

 следовательно, система имеет единственное решение.

Отсюда

 

2.   . Здесь  поскольку имеет два одинаковых столбца.

Следовательно, система не имеет единственного решения. Найдем  и

поэтому система имеет бесконечно много решений.

 

3. . Для этой системы  но

следовательно, решений нет.

ForStu / Лекции / АлГем / КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ 5 ФАКУЛЬТЕТА (ПМХ).

Copyright © 2004-2017, ForStu

Яндекс.Метрика